
Research Focus
The internet, and social media in particular, have made individual and institutional discourse visible like never before. Yet the mechanisms that shape the production of discourse — what leads individuals or institutions to speak up, whom do they address, what do they say — is not yet well understood. My research focuses on understanding these dynamics through the quantitative aggregation of collective communication behavior. In particular, my approach emphasizes the role that accountability, credibility, and legitimacy within social networks and communities play in shaping observable discourse.
SOME TOPICS OF INTEREST:
-- The social structural conditions that encourage reason-based responses to facts and criticism
-- The semantic signatures of coordinated efforts to manipulate audiences or obscure facts
-- The evolution of conversations in response to unpredictable events or shocks
Because my research focuses on the role of social pressure from potentially large communities, my methods emphasize natural experiments and other treatments where behavior can be observed in its natural social context and where its consequences are real.
Additional Links
Selected Publications
Journal Publications
- Margolin, D. The Theory of Informative Fictions: A Character-Based Approach to False News and other Misinformation. Communication Theory.
- Margolin, D. (2019). Computational Contributions: A Symbiotic Approach to Integrating Big, Observational Data Studies into the Communication Field. Communication Methods and Measures. 13:229-247.
- Margolin, D., Hannak, A., & Weber, I. (2018). Political Fact-Checking on Twitter: When Do Corrections Have an Effect? Political Communication. 25:196-219.
- Margolin, D., & Liao, W. (2018). The Emotional Antecedents of Solidarity in Social Media Crowds. New Media & Society. 20:3700-3719.
Conference Proceedings
- Newell, E., Schang, A., Margolin, D., & Ruths, D. (2017). Assessing the Verifiability of Attributions in News Text. Proceedings of the Eighth International Joint Conference on Natural Language Processing (Volume 1: Long Papers). National Taiwan Normal University and The Association for Computational Linguistics and Chinese Language Processing, National Taiwan Normal University and The Association for Computational Linguistics and Chinese Language Processing, Taipei, Taiwan #754 p.